APOOL Is a Cardiolipin-Binding Constituent of the Mitofilin/MINOS Protein Complex Determining Cristae Morphology in Mammalian Mitochondria
نویسندگان
چکیده
Mitochondrial cristae morphology is highly variable and altered under numerous pathological conditions. The protein complexes involved are largely unknown or only insufficiently characterized. Using complexome profiling we identified apolipoprotein O (APOO) and apolipoprotein O-like protein (APOOL) as putative components of the Mitofilin/MINOS protein complex which was recently implicated in determining cristae morphology. We show that APOOL is a mitochondrial membrane protein facing the intermembrane space. It specifically binds to cardiolipin in vitro but not to the precursor lipid phosphatidylglycerol. Overexpression of APOOL led to fragmentation of mitochondria, a reduced basal oxygen consumption rate, and altered cristae morphology. Downregulation of APOOL impaired mitochondrial respiration and caused major alterations in cristae morphology. We further show that APOOL physically interacts with several subunits of the MINOS complex, namely Mitofilin, MINOS1, and SAMM50. We conclude that APOOL is a cardiolipin-binding component of the Mitofilin/MINOS protein complex determining cristae morphology in mammalian mitochondria. Our findings further assign an intracellular role to a member of the apolipoprotein family in mammals.
منابع مشابه
STED super-resolution microscopy reveals an array of MINOS clusters along human mitochondria.
The mitochondrial inner membrane organizing system (MINOS) is a conserved large hetero-oligomeric protein complex in the mitochondrial inner membrane, crucial for the maintenance of cristae morphology. MINOS has been suggested to represent the core of an extended protein network that controls mitochondrial function and structure, and has been linked to several human diseases. The spatial arrang...
متن کاملMitofilin complexes: conserved organizers of mitochondrial membrane architecture.
Mitofilin proteins are crucial organizers of mitochondrial architecture. They are located in the inner mitochondrial membrane and interact with several protein complexes of the outer membrane, thereby generating contact sites between the two membrane systems of mitochondria. Within the inner membrane, mitofilins are part of hetero-oligomeric protein complexes that have been termed the mitochond...
متن کاملRole of mitochondrial inner membrane organizing system in protein biogenesis of the mitochondrial outer membrane
Mitochondria contain two membranes, the outer membrane and the inner membrane with folded cristae. The mitochondrial inner membrane organizing system (MINOS) is a large protein complex required for maintaining inner membrane architecture. MINOS interacts with both preprotein transport machineries of the outer membrane, the translocase of the outer membrane (TOM) and the sorting and assembly mac...
متن کاملDetailed Analysis of the Human Mitochondrial Contact Site Complex Indicate a Hierarchy of Subunits
Mitochondrial inner membrane folds into cristae, which significantly increase its surface and are important for mitochondrial function. The stability of cristae depends on the mitochondrial contact site (MICOS) complex. In human mitochondria, the inner membrane MICOS complex interacts with the outer membrane sorting and assembly machinery (SAM) complex, to form the mitochondrial intermembrane s...
متن کاملThe mitochondrial inner membrane protein mitofilin controls cristae morphology.
Mitochondria are complex organelles with a highly dynamic distribution and internal organization. Here, we demonstrate that mitofilin, a previously identified mitochondrial protein of unknown function, controls mitochondrial cristae morphology. Mitofilin is enriched in the narrow space between the inner boundary and the outer membranes, where it forms a homotypic interaction and assembles into ...
متن کامل